2019-2020学年人教A版选修2-1 立体几何与空间向量 学案
2019-2020学年人教A版选修2-1   立体几何与空间向量    学案第1页

[解题策略]

  立体几何中的"动态"问题就变化起因而言大致可分为两类:一是平移;二是旋转.就所求变量而言可分为三类:一是相关线、面、体的测度;二是角度;三是距离.立体几何动态问题的解决需要较高的空间想象能力与化归处理能力,在各省市的高考选择题与填空题中也时有出现.在解"动态"立体几何题时,如果我们能努力探寻运动过程中"静"的一面,动中求静,往往能以静制动、克难致胜.

1.去掉枝蔓见本质--大道至简

在解决立体几何中的"动态"问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质"形销骨立",即从混沌中找出秩序,是解决"动态"问题的关键.

例1 如图1,直线l⊥平面α,垂足为O.正方体ABCD-A1B1C1D1的棱长为2.点A是直线l上的动点,点B1在平面α内,则点O到线段CD1中点P的距离的最大值为________.

图1

答案 +2

解析 从图形分化出4个点O,A,B1,P,其中△AOB1为直角三角形,固定AOB1,点P的轨迹是在与AB1垂直的平面上且以AB1的中点Q为圆心的圆,

从而OP≤OQ+QP=AB1+2=+2,

当且仅当OQ⊥AB1,且点O,Q,P共线时取到等号,此时直线AB1与平面α成45°角.

2.极端位置巧分析--穷妙极巧

在解决立体几何中的"动态"问题时,对于移动问题,由图形变化的连续性,穷尽极端特殊之要害,往往能直取答案.

例2 在正四面体A-BCD中,E为棱BC的中点,F为直线BD上的动点,则平面AEF与平面ACD所成二面角的正弦值的取值范围是________.

答案 

解析 本例可用极端位置法来加以分析.

先寻找垂直:记O为△ACD的中心,G为OC的中点,则BO⊥面ACD,EG⊥面ACD.如图2,过点A,E,G的平面交直线BD于点F.此时,平面AEF与平面ACD所面二面角的正弦值为1.