1.命题p:存在实数m,使方程x2+mx+1=0有实数根,则"非p"形式的命题是( )
A.存在实数m,使得方程x2+mx+1=0无实根;
B.不存在实数m,使得方程x2+mx+1=0有实根;
C.对任意的实数m,使得方程x2+mx+1=0有实根;
D.至多有一个实数m,使得方程x2+mx+1=0有实根;
2.有这样一段演绎推理是这样的"有些有理数是分数,整数是有理数,则整数是分数"结论显然是错误的,是因为( )
A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
3.命题"xR,x2-x+3>0"的否定是
4."末位数字是0或5的整数能被5整除"的
否定形式是
否命题是
5.写出下列命题的否定,并判断其真假:
(1)p:"m∈R,方程x2+x-m=0必有实根;
(2)q:R,使得x2+x+1≤0;
6.写出下列命题的"非P"命题,并判断其真假:
(1)若m>1,则方程x2-2x+m=0有实数根.
(2)平方和为0的两个实数都为0.
(3)若是锐角三角形, 则的任何一个内角是锐角.
(4)若abc=0,则a,b,c中至少有一为0.
(5)若(x-1)(x-2)=0 ,则x≠1,x≠2.
八、参考答案:
1. B
2.C
3. xR,x2-x+3≤0
4.否定形式:末位数是0或5的整数,不能被5整除
否命题:末位数不是0且不是5的整数,不能被5整除
5.(1)p:$m∈R,方程x2+x-m=0无实根;真命题。
(2)q:R,使得x2+x+1>0;真命题。
6. ⑴ 若m>1,则方程x2-2x+m=0无实数根,(真);
⑵平方和为0的两个实数不都为0(假);
⑶若是锐角三角形, 则的任何一个内角不都是锐角(假);
⑷若abc=0,则a,b,c中没有一个为0(假);
⑸若(x-1)(x-2)=0,则 或,(真).