第1讲 导数的概念及运算
★ 知 识 梳理 ★
1.用定义求函数的导数的步骤.
(1)求函数的改变量Δy;(2)求平均变化率.(3)取极限,得导数(x0)=.
2.导数的几何意义和物理意义
几何意义:曲线f(x)在某一点(x0,y0)处的导数是过点(x0,y0)的切线的
物理意义:若物体运动方程是s=s(t),在点P(i0,s(t0))处导数的意义是t=t0处
的
解析:斜率.;瞬时速度.
3. 几种常见函数的导数
(为常数);();
; ;
; ;
;.
解析:
4.运算法则
①求导数的四则运算法则:
; ; .
解析:;
②复合函数的求导法则:或
★ 重 难 点 突 破 ★
1.重点:理解导数的概念与运算法则,熟练掌握常见函数的计算和曲线的切线方程的求法
2.难点:切线方程的求法及复合函数求导
3.重难点:借助于计算公式先算平均增长率,再利用函数的性质解决有关的问题.
(1)平均变化率的实际含义是改变量与自变量的改变量的比。
问题1.比较函数与,当时,平均增长率的大小.
点拨:解题规律技巧妙法总结: 计算函数的平均增长率的基本步骤是
(1)计算自变量的改变量