个最大。
方法三:先写出27的因数,再看27的因数中哪些是18的因数。从中找出最大的。
(4)引导学生看教材第61页的"你知道吗",指导学生自学分解质因数的方法,找两个数的最大公因数。
24和36的最大公因数=2×2×3=12
指出:两个数所有公因数的积,就是这两个数的最大公因数。
(5)巩固小练习:完成教材第61页的"做一做"第2、3题。
第2题:学生根据所学知识站队,并说出这样站队的道理。
第3题:学生先独立观察每组数有什么特点,再进行交流。
小结:求两个数的最大公因数有哪些特殊情况?
① 两个数成倍数关系时,较小的数就是它们的最大公因数。
②当两个数只有公因数1时,它们的最大公因数也是1。
【课堂作业】
1.完成教材第63页练习十五的第2题。
学生先独立完成,然后集体交流找最大公因数的方法,并将这8组数分为三类:一类是最大的公因数是1,(如5和9,15和16);一类是最大公因数是较小的数本身(如34和17、16和48、13和78);另一类是一般情况。
2.完成教材第63页练习十五的第3题。
学生独立完成,填在课本上,集体交流。
3.完成教材第63页练习十五的第4题。
此题渗透了互质数组成的几种情况,练习时,教师可先让学生回忆质数和合数的概念,然后让学生独立完成,然后全班反馈。
答案:1:(1)1,5(2)1,7
2:3 3 6 15 9 1 17 16 1 13