讲一讲
1.若方程x2+y2+2mx-2y+m2+5m=0表示圆,求:
(1)实数m的取值范围;
(2)圆心坐标和半径.
[尝试解答] (1)据题意知,D2+E2-4F=(2m)2+(-2)2-4(m2+5m)>0,
即4m2+4-4m2-20m>0,
解得m<,
故m的取值范围为.
(2)将方程x2+y2+2mx-2y+m2+5m=0写成标准方程为(x+m)2+(y-1)2=1-5m,
故圆心坐标为(-m,1),半径r=.
形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时可有如下两种方法:
(1)由圆的一般方程的定义令D2+E2-4F>0,成立则表示圆,否则不表示圆.
(2)将方程配方后,根据圆的标准方程的特征求解.
应用这两种方法时,要注意所给方程是不是x2+y2+Dx+Ey+F=0这种标准形式,若不是,则要化为这种形式再求解.
练一练
1.下列方程各表示什么图形?若表示圆,求其圆心和半径.
(1)x2+y2+x+1=0;