§2.1 合情推理与演绎推理(三)
【学情分析】:
合情推理(归纳推理和类比推理)的可靠性有待检验,在这种情形下,提出演绎推理就显得水到渠成了.通过演绎推理的学习,让学生对推理有了全新的认识,培养其言之有理、论证有据的习惯,加深对数学思维方法的认识.
【教学目标】:
(1)知识与技能:
了解演绎推理的含义、基本方法;正确地运用演绎推理、进行简单的推理.
(2)过程与方法:
体会运用"三段论"证明问题的方法、规范格式.
(3)情感态度与价值观:
培养学生言之有理、论证有据的习惯;加深对数学思维方法的认识;提高学生的数学思维能力.
【教学重点】:
正确地运用演绎推理进行简单的推理.
【教学难点】:
正确运用"三段论"证明问题.
【教学过程设计】:
教学环节 教 学 活 动 设计意图 一、复习:
合情推理 归纳推理:从特殊到一般
类比推理:从特殊到特殊
从具体问题出发――观察、分析比较、联想――归纳.类比――提出猜想. 复习旧知识 二、
问题情境 观察与思考:(学生活动)
1.所有的金属都能导电,
铜是金属,
所以,铜能够导电.
2.一切奇数都不能被2整除,
(2100+1)是奇数,
所以,(2100+1)不能被2整除.
3.三角函数都是周期函数,
tan是三角函数,
所以,tan是周期函数.
提出问题:像这样的推理是合情推理吗?如果不是,它与合情推理有何不同(从推理形式上分析)?
创设问题情景,引入新知 三、
学生活动
1.所有的金属都能导电 ←----大前提
铜是金属, ←-----小前提
所以,铜能够导电 ←――结论
2.一切奇数都不能被2整除 ←----大前提
(2100+1)是奇数,←――小前提
所以,(2100+1)不能被2整除。 ←―――结论
3.三角函数都是周期函数, ←--大前提
tan是三角函数, ←――小前提
所以,tan是周期函数。←――结论
学生探索,
发现问题,
总结特征 四、
建构数学--概念形成 演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理(或逻辑推理). 构建新知,
概念形成