提示 不一定.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打"√"或"×")
(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.( × )
(2)f′(x0)=[f(x0)]′.( × )
(3)(2x)′=x·2x-1.( × )
题组二 教材改编
2.若f(x)=x·ex,则f′(1)=.
答案 2e
解析 ∵f′(x)=ex+xex,∴f′(1)=2e.
3.曲线y=1-在点(-1,-1)处的切线方程为.
答案 2x-y+1=0
解析 ∵y′=,∴y′|x=-1=2.
∴所求切线方程为2x-y+1=0.
题组三 易错自纠
4.如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是( )
答案 D
解析 由y=f′(x)的图象知,y=f′(x)在(0,+∞)上单调递减,说明函数y=f(x)的切线的斜率在(0,+∞)上也单调递减,故可排除A,C.
又由图象知y=f′(x)与y=g′(x)的图象在x=x0处相交,说明y=f(x)与y=g(x)的图