[提示] 圆柱、圆锥、圆台的侧面积公式之间的关系:
S圆柱侧=2πrlr′=r(←――)S圆台侧=π(r′+r)lr′=0(――→)S圆锥侧=πrl.
(2)柱体、锥体、台体的体积公式之间有什么关系?
[提示] 柱体、锥体、台体的体积公式之间的关系:
V=ShS′=S(←――)V=3(1)(S′++S)hS′=0(――→)V=3(1)Sh.
[基础自测]
1.思考辨析
(1)多面体的表面积等于各个面的面积之和.( )
(2)棱台的侧面展开图是由若干个等腰梯形组成的.( )
(3)圆台的高就是相应母线的长.( )
(4)沿不同的棱将多面体展开,得到的展开图表面积相等.( )
[提示] (1)√
(2)× 侧面展开图不一定是等腰梯形.
(3)× 圆台的高是上、下两底面间的距离而不是母线长.
(4)√
2.正方体的表面积为96,则正方体的体积为( )
A.48 B.64 C.16 D.96
B [设正方体的棱长为a,则6a2=96,∴a=4.
∴其体积V=a3=43=64.故选B.]
3.侧面都是等腰直角三角形的正三棱锥,底面边长为a时,该三棱锥的表面积是( )
A.4(3)a2 B.4(3)a2
C.2(3)a2 D.4(3)a2
A [设正三棱锥的侧棱长为b,则由条件知,b2+b2=a2,即b2=2(1)a2,∴S表=4(3)a2+3×2(1)×2(1)a2=4(3)a2.故选A.]
4.圆锥的母线长为5,底面半径为3,则其体积为( )