解析 打气时,活塞每推动一次,就把体积为V0、压强为p0的气体推入容器内,若活塞工作n次,就是把压强为p0、体积为nV0的气体压入容器内,容器内原来有压强为p0、体积为V的气体,根据玻意耳定律得:
p0(V+nV0)=p′V.
所以p′=p0=(1+n)p0.
抽气时,活塞每拉动一次,就把容器中的气体的体积从V膨胀为V+V0,而容器中的气体压强就要减小,活塞推动时,将抽气筒中的体积为V0的气体排出,而再次拉动活塞时,又将容器中剩余的气体的体积从V膨胀到V+V0,容器内的压强继续减小,根据玻意耳定律得:
第一次抽气p0V=p1(V+V0),
p1=p0.
活塞工作n次,则有:pn=()np0.故正确答案为D.
二、理想气体的图象问题
名称 图象 特点 其他图象 等
温
线 p-V pV=CT(C为常量),即pV之积越大的等温线对应的温度越高,离原点越远 p- p=,斜率k=CT,即斜率越大,对应的温度越高
等
容
线 p-T p=T,斜率k=,即斜率越大,对应的体积越小