七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标。
演示多媒体课件列举几种生物的不同性状,如下:
(1)青霉菌能产生对人类有用的抗生素--青霉素。
(2)豆科植物的根瘤菌能够固定空气中的氮气。
(3)人的胰岛素细胞能分泌胰岛素调节血糖的浓度。
〖讲述〗以上几种生物各自有其特定的性状,这些性状都是基因特异性表达的结果,但是人类能不能改造基因呢?能不能使本身没有某个性状的生物具有某个特定性状呢?例如,让禾本科植物能够固定空气中的氮气;让微生物生产出人的胰岛素、干扰素等药物。这样既节省了人力,又简化了生产,同时还不会对环境造成污染。这种设想能实现吗?回答是可以的。通过科学家们的不断努力,在20世纪70年代终于创立了一种能定向改造生物的新技术--基因工程。
(三)合作探究、精讲点拨。
探究一:基因工程的原理
教师利用"问题探讨",提出问题,组织学生讨论、交流看法。
·为什么能把一种生物的基因"嫁接"到另一种生物上?
·推测这种"嫁接"怎样才能实现?
·这种"嫁接"对品种的改良有什么意义?
【问1】杂交育种有哪些局限性?人类是否可以按照自己的意愿直接定向改变生物。
"你的想法很好,可是用什么样的方法才能实现你的设想呢?"
用类比的方法引导学生思考基因工程的大致步骤和所需要的工具:剪刀、针线、运载体等。并用问题启发学生:"你能想像这种剪刀加浆糊式的'嫁接工作在分子水平的操作,其难度会有多大吗?"下面以EcoRI为例,构建重组DNA分子模型,体会基因的剪切、拼接、缝合的道理。
教师交代清楚EcoR I是已发现的500多种限制性内切酶中的一种,它是一种从细菌中发现的能在特定位置上切割DNA分子的酶。它的特殊性在于,它在DNA分子内部"下剪刀",专门识别DNA分子中含有的"GAATTC"这样的序列,一旦找到就从G和A之间剪断(参考教科书插图6-3)。
用同一种限制性内切酶切割后的DNA片断其末端可以用连接酶来缝合(参考教科书插图6-4)。这样"剪切拼接"就可以形成重组的DNA分子。
将学生分成4个人一组,发给所需材料,可将构建模型的文字指导(参见选修3《现代生物科技专题》P.6"重组DNA分子的模拟操作"),复印后发给各组。
教师提出问题:
1.在制作模型时用到的工具(剪刀和不干胶)各代表什么?比较剪切后的DNA片断的末端切片,你发现有什么特点呢?
2.回顾在模型构建过程中,每一步的操作和所用到的工具以及形成的"产品",你对重组DNA的操作有什么新的理解?