(3)趋近于的定值就是函数y=f(x)的导数.
思考2 利用定义求下列常用函数的导数:
①y=c,②y=x,③y=x2,
④y=,⑤y=.
答 ①y′=0,②y′=1,③y′=2x,④y′= =
= =-(其它类同),
⑤y′=.
思考3 导数的几何意义是曲线在某点处的切线的斜率.物理意义是运动物体在某一时刻的瞬时速度.
(1)函数y=f(x)=c(常数)的导数的物理意义是什么?
(2)函数y=f(x)=x的导数的物理意义呢?
答 (1)若y=c表示路程关于时间的函数,
则y′=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.
(2)若y=x表示路程关于时间的函数,则y′=1可以解释为某物体做瞬时速度为1的匀速运动.
思考4 在同一平面直角坐标系中,画出函数y=2x,y=3x,y=4x的图象,并根据导数定义,求它们的导数.
(1)从图象上看,它们的导数分别表示什么?
(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢?
(3)函数y=kx(k≠0)增(减)的快慢与什么有关?
答 函数y=2x,y=3x,y=4x的图象如图所示,导数分别为y′=2,y′=3,y′=4.
(1)从图象上看,函数y=2x,y=3x,y=4x的导数分别表示这三条直线的斜率.
(2)在这三个函数中,y=4x增加得最快,y=2x增加得最慢.
(3)函数y=kx(k>0)增加的快慢与k有关系,即与函数的导数有关系,k越大,函数增加得越快,k越小,函数增加得越慢.
函数y=kx(k<0)减少的快慢与|k|有关系,即与函数导数的绝对值有关系,|k|越大,函数减少得越快,|k|越小,函数减少得越慢.