椭圆及其标准方程(1)
学习目标
1.从具体情境中抽象出椭圆的模型;
2.掌握椭圆的定义;
3.掌握椭圆的标准方程.
学习过程
一、课前准备
(预习教材理P38~ P40,文P32~ P34找出疑惑之处)
复习1:过两点,的直线方程 .
复习2:方程 表示以 为圆心, 为半径的 .
二、新课导学
※ 学习探究
取一条定长的细绳,
把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 .
如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?
思考:移动的笔尖(动点)满足的几何条件是什么?
经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.
新知1: 我们把平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .
反思:若将常数记为,为什么?
当时,其轨迹为 ;
当时,其轨迹为 .
试试:
已知,,到,两点的距离之和等于8的点的轨迹是 .
小结:应用椭圆的定义注意两点:
①分清动点和定点;
②看是否满足常数.
新知2:焦点在轴上的椭圆的标准方程
其中
若焦点在轴上,两个焦点坐标 ,