思考5:直线和平面都可以看成点的集合.那么"点P在直线l上","点A在平面α内",用集合符号可怎样表示?
"点P在直线l外","点A在平面α外"用集合符号可怎样表示?
思考6:如果直线l上的所有点都在平面α内,就说直线l在平面α内,或者说平面α经过直线l,否则,就说直线l在平面α外. 那么"直线l在平面α内","直线l在平面α外", 用集合符号可怎样表示?
思考1:如果直线l与平面α有一个公共点P,那么直线l是否在平面α内?
思考2:如图,设直线l与平面α有一个公共点A,点B为直线l上另一个点,当点B逐渐与平面α靠近时,直线l上其余各点与平面α的位置关系如何变化?
思考3:如图,当点A、B落在平面α内时,直线l上其余各点与平面α的位置关系如何?由此可得什么结论?
公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
思考4:公理1如何用符号语言表述?它有什么理论作用?