参考答案
一、设计问题,创设情境
问题1:(1)花生含量>3%,乳粉含量>0.8%;
(2)"小客车行驶速度≤100km/h""除小客车外的其他车辆行驶速度≤80km/h";
(3)26℃≤这一天的气温≤32℃.
二、信息交流,揭示规律
问题2:不等关系;学生举例:高矮、胖瘦、长短、轻重等.
问题3:不等式;用不等号将两个代数式连接起来的式子叫不等式;<、>、≠、≤、≥.
三、运用规律,解决问题
【例1】(1)a+b<0;
(2)x2+2x>10;
(3)|a|≤3;
(4){■(x≥2y"," @x"-" y≤6"." )┤
四、变式训练,深化提高
问题4:不等关系;找出不等关系以及不等关系中涉及的量,并用合理的字母表示这些量.
问题5:"销售的总收入≥20万元";定价.
若杂志的定价为x元,则销售量就减少((x"-" 2"." 5)/(0"." 1)×0"." 2)万本.
销售量为(8"-" (x"-" 2"." 5)/(0"." 1)×0"." 2)万本,则总收入为(8"-" (x"-" 2"." 5)/(0"." 1)×0"." 2)x万元.
即"销售的总收入不低于20万元"的不等式表示为(8"-" (x"-" 2"." 5)/(0"." 1)×0"." 2)x≥20.
问题6:可设杂志的单价提高了0.1n元(n∈N*),
那么销售量减少了0.2n万本,单价为(2.5+0.1n)元,则也可得"销售的总收入不低于20万元"的不等式,表示为(2.5+0.1n)(8-0.2n)≥20.
【例3】问题7:①"500mm钢管总长度+600mm钢管总长度≤4000mm";
②"600mm钢管的数量不能超过500mm钢管的数量的3倍";
③"两种钢管的数量都不能为负".
两个,即两种钢管的数量.
解:假设截得500mm和600mm钢管的数量分别为x,y根.
同时满足上述不等关系,可以用下面的不等式组来表示:{■(500x+600y≤4000"," @3x≥y"," @x≥0"," @y≥0"," @x"," y"∈" N"." )┤
问题8:(1)找出问题中的不等关系,必要时用文字、符号等表示出来;
(2)分析不等关系中涉及的量,并分析这些量之间的数量关系;
(3)用最少的变量(字母)表示不等关系中涉及的量;
(4)列出与不等关系对应的不等式(组).
五、反思小结,观点提炼