疱疹面积小于70 mm2 疱疹面积不小于70 mm2 合计 注射药物A a=70 b=30 100 注射药物B c=35 d=65 100 合计 105 95 n=200 χ2=≈24.56,
由于χ2>6.635,所以有99%的把握认为两者有关系,或者说在犯错误概率不超过0.01的前提下,认为"注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异".
反思与感悟 利用假设检验的思想,计算随机变量χ2的值,可以更精确地判断两个分类变量是否有关系.
跟踪训练1 为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 不喜爱打篮球 合计 男生 5 女生 10 合计 50 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,A1,A2,A3,A4,A5还喜欢打羽毛球,B1,B2,B3还喜欢打乒乓球,C1,C2还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
解 (1)列联表补充如下:
喜爱打篮球 不喜爱打篮球 合计 男生 20 5 25 女生 10 15 25 合计 30 20 50 (2)∵χ2=≈8.333>6.635,
∴有99%的把握认为喜爱打篮球与性别有关.
(3)从10位女生中选出喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:
(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2