(四)教学过程
教学
环节 教学内容 师生互动 设计意图 提出
问题 我们学习了对数运算法则,可以看到对数的运算法则仅适用于对数的底数相同的情形,若在解题过程中,遇到对数的底数不相同时怎么办?
师:从对数的定义可以知道,任何不等于1的正数都可以作为对数的底.数学史上,人们经过大量的努力,制作了常用对数、自然对数表,只要通过查表就能求出任意正数的常用对数或自然对数.这样,如果能将其他底的对数转换为以10或e为底的对数,就能方便地求出任意不为1的正数为底的对数.
产生认知冲突,激发学生的学习欲望. 概念
形成 1. 探求换底公式,明确换底公式的意义和作用.
例如,求我国人口达到18亿的年份,就是计算x=log1.01的值,利用换底公式与对数的运算性质,可得
x=log1.01==≈=32.8837≈33(年).
由此可得,如果人口年增长率控制在1%,那么从2000年初开始,大约经过33年,即到2032年底我国的人口总数可达到18亿.
师:你能根据对数的定义推导出下面的换底公式吗?
logaN=(a>0,且a≠1;c>0,且c≠1;N>0).
(师生讨论并完成)
当a>0,且a≠1时,
若ab=N, ①
则logaN=b. ②
在①的两边取以c(c>0,且c≠1)为底的对数,
则logcab=logcN,
即blogca=logcN.
∴b=. ③
由②③得logaN=(c>0,且c≠1).
一般地,logaN=(a>0,且a≠1;c>0,且c≠1;N>0),这个公式称为换底公式.
推导换底公式