①充要条件:p⇒q且q⇒p,记作p⇔q;
②充分不必要条件:p⇒q且q⇏p.
③必要不充分条件:p⇏q且q⇒p.
④既不充分也不必要条件:p⇏q且q⇏p.
3.简单的逻辑联结词
(1)用联结词"且""或""非"联结命题p和命题q,可得p∧q,p∨q,綈p.
(2)命题p∧q,p∨q,綈p的真假判断:
p∧q中p,q有一假即为假,p∨q有一真即为真,p与綈p必定是一真一假.
4.全称量词与存在量词
(1)全称量词与全称命题:
全称量词用符号"∀"表示.
全称命题用符号简记为∀x∈M,p(x).
(2)存在量词与特称命题:
存在量词用符号"∃"表示.
特称命题用符号简记为∃x0∈M,p(x0).
5.含有一个量词的命题的否定
命题 命题的否定 ∀x∈M,p(x) ∃x0∈M,綈p(x0) ∃x0∈M,p(x0) ∀x∈M,綈p(x)
1.命题"若x>0且y>0,则x+y>0"的否命题是假命题.( √ )
2."所有奇数都是质数"的否定"至少有一个奇数不是质数"是真命题.( √ )
3.命题"若p,则q"与命题"若綈p,则綈q"的真假性一致.( × )
4.已知命题p:∃x0∈R,x0-2>0,命题q:∀x∈R,x2>x,则命题p∨(綈q)是假命题.( × )