2019-2020学年人教B版选修2-1 空间几何量的计算.知识框架 教案
2019-2020学年人教B版选修2-1    空间几何量的计算.知识框架 教案第2页

 空间线、面的位置关系 B ① 理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.

  ◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.

  ◆公理2:过不在同一条直线上的三点,有且只有一个平面.

  ◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

  ◆公理4:平行于同一条直线的两条直线互相平行.

  ◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.

  ② 以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定.

  理解以下判定定理.

  ◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.

  ◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.

  ◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.

  ◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.

  理解以下性质定理,并能够证明.

  ◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.

  ◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.

  ◆垂直于同一个平面的两条直线平行.

  ◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.

  ③ 能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.

公理1,公理2,公理3,公理4,定理* A *公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.

公理2:过不在一条直线上的三点,有且只有一个平面.

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

公理4:平行于同一条直线的两条直线平行.

定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.

1.集合的语言:

我们把空间看做点的集合,即把点看成空间中的基本元素,将直线与平面看做空间的子集,这样便可以用集合的语言来描述点、直线和平面之间的关系:

点在直线上,记作:;点不在直线上,记作;

点在平面内,记作:;点不在平面内,记作;

直线在平面内(即直线上每一个点都在平面内),记作;

直线不在平面内(即直线上存在不在平面内的点),记作;

直线和相交于点,记作,简记为;

平面与平面相交于直线,记作.

2.平面的三个公理: