2017-2018学年人教A版必修三 系统抽样 教案
2017-2018学年人教A版必修三        系统抽样     教案第2页

新知探究

提出问题

(1)某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?

(2)请归纳系统抽样的定义和步骤.

(3)系统抽样有什么特点?

讨论结果:

(1)可以将这500名学生随机编号1-500,分成50组,每组10人,第1组是1-10,第二组11-20,依次分下去,然后用简单随机抽样在第1组抽取1人,比如号码是2,然后每隔10个号抽取一个,得到2,12,22,...,492.

这样就得到一个容量为50的样本.

这种抽样方法称为系统抽样.

(2)一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.

其步骤是:

1°采用随机抽样的方法将总体中的N个个体编号;

2°将整体按编号进行分段,确定分段间隔k(k∈N,l≤k);

3°在第1段用简单随机抽样确定起始个体的编号l(l∈N,l≤k);

4°按照一定的规则抽取样本.通常是将起始编号l加上间隔k得到第2个个体编号(l+k),再加上k得到第3个个体编号(l+2k),这样继续下去,直到获取整个样本.

说明:从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.

(3)系统抽样的特点是:

1°当总体容量N较大时,采用系统抽样;

2°将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k=[].

3°预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.