2019-2020学年人教A版选修1-1 基本初等函数和导数运算法则 教案
2019-2020学年人教A版选修1-1  基本初等函数和导数运算法则   教案第3页

三.典例分析

例1.假设某国家在20年期间的年均通货膨胀率为,物价(单位:元)与时间(单位:年)有如下函数关系,其中为时的物价.假定某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?

解:根据基本初等函数导数公式表,有

  所以(元/年)

  因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨.

例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.

(1)

(2)y =;

(3)y =x · sin x · ln x;

(4)y =;

(5)y =.

(6)y =(2 x2-5 x +1)ex

(7) y =

【点评】

  ① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心.

例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为时所需费用(单位:元)为

       

求净化到下列纯净度时,所需净化费用的瞬时变化率:(1) (2)

解:净化费用的瞬时变化率就是净化费用函数的导数.

      

         

(1) 因为,所以,纯净度为时,费用的瞬时变化率是52.84元/吨.

(2) 因为,所以,纯净度为时,费用的瞬时变化率是1321元/吨.

函数在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,.它表示纯净度为左右时净化费用的瞬时变化率,大约是纯净度为左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.

及时运用新知识,巩固练习,让学生体验成功,为了使学生实现从掌握知识到运用知识的转化 四、概括梳理,形成系统

(小结) 1.基本初等函数的导数公式表

2.能结合其几何意义解决一些与切点、切线斜率有关的较为综合性问题. 练习与测试:

1. 求下列函数的导数:(1) (2) (3) y = tanx (4)

2.求函数的导数.

(1)y=2x3+3x2-5x+4 (2)y=sinx-x+1 (3)y=(3x2+1)(2-x) (4)y=(1+x2)cosx

3.填空:

(1)[(3x2+1)(4x2-3)]′=( )(4x2-3)+(3x2+1)( )

(2)(x3sinx)′=( )x2sinx+x3( )

4.判断下列求导是否正确,如果不正确,加以改正.

[(3+x2)(2-x3)]′=2x(2-x3)+3x2·(3+x2)

5.y=3x2+xcosx,求导数y′.

6.y=5x10sinx-2cosx-9,求y′.

参考答案:

1.(1)y′′;

(2)y′′;

(3)y′= (tanx)′=()′;

(4)y′′=.

2.(1)(2x3+3x2-5x+4)′=(2x3)′+(3x2)′-(5x)′+4′=2·3x2+3·2x-5=6x2+6x-5

(2)y′=(sinx-x+1)′=(sinx)′-x′+1′=cosx-1

(3)y′=[(3x2+1)(2-x)]′=(3x2+1)′(2-x)+(3x2+1)(2-x)′

  =3·2x(2-x)+(3x2+1)(-1)=-9x2+12x-1

(4)y′=[(1+x2)cosx]′=(1+x2)′cosx+(1+x2)(cosx)′

  =2xcosx+(1+x2)(-sinx)=2xcosx-(1+x2)sinx

3.(1)[(3x2+1)(4x2-3)]′=(3x2+1)′(4x2-3)+(3x2+1)(4x2-3)′

  =3·2x(4x2-3)+(3x2+1)(4·2x)=(6x)(4x2-3)+(3x2+1)(8x)

(2) (x3sinx)′=(x3)′sinx+x3(sinx)′=(3)x2sinx+x2(cosx)

4.不正确.[(3+x)2(2-x3)]′=(3+x2)′(2-x3)+(3+x2)(2-x3)′

=2x(2-x3)+(3+x2)(-3x2)=2x(2-x3)-3x2(3+x2)

5.y′=(3x2+xcosx)′=(3x2)′+(xcosx)′

=3·2x+x′cosx+x(cosx)′=6x+cosx+xsinx

6.y′=(5x10sinx-2cosx-9)′=(5x10sinx)′-(2cosx)′-9′

  =5·10x9sinx+5x10cosx-(·cosx-2sinx)

  =50x9sinx+5x10cosx-cosx+2sinx

=(50x9+2)sinx+(5x10-)cosx