当m<0时,g(x)在[1,3]上是减函数,
∴g(x)max=g(1)=m-6<0,得m<6,∴m<0.
综上所述,m的取值范围是.
方法二 当x∈[1,3]时,f(x)<-m+5恒成立,
即当x∈[1,3]时,m(x2-x+1)-6<0恒成立.
∵x2-x+1=2+>0,
又m(x2-x+1)-6<0,∴m<.
∵函数y==在[1,3]上的最小值为,∴只需m<即可.
综上所述,m的取值范围是.
引申探究
把例2(2)改为:对于任意m∈[1,3],f(x)<-m+5恒成立,求实数x的取值范围.
解 f(x)<-m+5,即mx2-mx-1<-m+5,
m(x2-x+1)-6<0.
设g(m)=m(x2-x+1)-6.
则g(m)是关于m的一次函数且斜率
x2-x+1=2+>0.
∴g(m)在[1,3]上为增函数,要使g(m)<0在[1,3]上恒成立,只需g(m)max=g(3)<0,
即3(x2-x+1)-6<0,x2-x-1<0,
方程x2-x-1=0的两根为x1=,x2=,
∴x2-x-1<0的解集为,
即x的取值范围为.
反思与感悟 有关不等式恒成立求参数的取值范围,通常处理方法有两种:
(1)考虑能否进行参变量分离,若能,则构造关于变量的函数,转化为求函数的最大(小)值,从而建立参变量的不等式.
(2)若参变量不能分离,则应构造关于变量的函数(如一次函数、二次函数),并结合图象建立参变量的不等式求解.
跟踪训练2 当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取值范围是________.