生:底×高(指一指底和高在哪里)
2、数一数:
师:两种猜想产生了两个结果,到底哪一个是正确的?好,用我们的面积格直接测量一下。(先数整格的,一共有20格,再看半格的,合成4个整格,所以一共就要24格,也就是24 m2。)
生:我把左边这部分移到右边,全部都是整格的,4×6=24格。
师:这个方法特别有创意,特别快,把这个部分移过来,平行四边形就变成了什么形?(长方形)这样数起来既简单、又快、又方便。把平行四边形转化成长方形,利用旧知识解决新问题,多么好的方法呀!
3、剪一剪,拼一拼:
师:(出示一个平行四边形)这个平行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)这条虚线也就是平行四边形的哪部分?(高)还记得怎样画高吗?
师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!拿出课前老师发给你的平行四边形,动手剪一剪、拼一拼,把它转化一个长方形。(学生动手操作)。汇报结果。
4、议一议:
师:老师有几个问题,小组讨论:
⑴ 原来平行四边形的面积和拼成的长方形的面积相等吗?
⑵ 原来平行四边形的底与拼成的长方形的长有什么关系?
⑶ 原来平行四边形的高与拼成的长方形的宽有什么关系?
汇报:沿着平行四边形的高剪成两部分,平移过去拼成了长方形。平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,长方形的的面积=长×高,所以,平行四边形的面积=底×高。
师:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=ah(板书S=ah)。
三、分层训练,巩固内化
㈠ 基本练习:
1、例1:平行四边形花坛的底是6厘米m,高是4m,它的面积是多少?