2019-2020学年人教A版必修二 圆的一般方程 学案
2019-2020学年人教A版必修二     圆的一般方程    学案第1页

圆的一般方程

学习目标 1.掌握圆的一般方程及其特点;2.会将圆的一般方程化为圆的标准方程,并能熟练地指出圆心的位置和半径的大小;3.能根据某些具体条件,运用待定系数法确定圆的方程.

知识点 圆的一般方程

思考1 方程x2+y2-2x+4y+1=0,x2+y2-2x+4y+6=0分别表示什么图形?

答案 对方程x2+y2-2x+4y+1=0配方得:(x-1)2+(y+2)2=4,表示以(1,-2)为圆心,半径为2的圆,

方程x2+y2-2x+4y+6=0配方得(x-1)2+(y+2)2=-1不表示任何图形.

思考2 对于方程x2+y2+Dx+Ey+F=0是否表示圆?

答案 方程x2+y2+Dx+Ey+F=0配方得(x+)2+(y+)2=,

当D2+E2-4F>0时,表示以(-,-)为圆心,为半径的圆.

方程 条件 图形 x2+y2+Dx+Ey+F=0 D2+E2-4F<0 不表示任何图形 D2+E2-4F=0 表示一个点(-,-) D2+E2-4F>0 表示以(-,-)为圆心,以为半径的圆

类型一 圆的一般方程的概念

例1 若方程x2+y2+2mx-2y+m2+5m=0表示圆,求实数m的取值范围,并写出圆心坐标和半径.

解 由表示圆的条件,

得(2m)2+(-2)2-4(m2+5m)>0,

解得m<.