1.1. 两个原理
课前预习学案
一、预习目标
准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。
二、预习内容
分类计数原理:完成一件事, 有n类方式, 在第一类方式,中有m1种不同的方法,在第二类方式,中有m2种不同的方法,......,在第n类方式,中有mn种不同的方法. 那么完成这件事共有 N= 种不同的方法.
分步计数原理:完成一件事,需要分成n个 ,做第1步有m1种不同的方法,做第2步有m2种不同的方法,......,做第n步有mn种不同的方法,那么完成这件事共有
N= 种不同的方法。
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容 课内探究学案
一、 学习目标
二、 准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。
学习重难点:
教学重点:两个原理的理解与应用
教学难点:学生对事件的把握
二、学习过程
情境设计
1、从学校南大门到图艺中心有多少种不同的走法?
2、从学校南大门经图艺中心到食堂有多少种不同的走法?(请画分析图)
3、课件中提供的生活实例。
新知教学
分类计数原理:完成一件事, 有n类 , 在第一类方式,中有m1种不同的方法,在第二类方式,中有m2种不同的方法,......,在第n类方式,中有mn种不同的方法. 那么完成这件事共有 N= 种不同的方法.
分步计数原理:完成一件事,需要分成n个 ,做第1步有m1种不同的方法,做第2步有m2种不同的方法,......,做第n步有mn种不同的方法,那么完成这件事共有
N= n种不同的方法。
巩固原理
例1、某班共有男生28名,女生20名,从该班选出学生代表参加校学代会。
(1)若学校分配给该班1名代表,有多少不同的选法?
(2)若学校分配给该班2名代表,且男、女代表各一名,有多少种不同的选法?
解:
练习1、乘积展开后共有多少项?
例2(1)在下图(1)的电路中,只合上一只开关以接通电路,有多少种不同的方法?
(2)在下图(2)的电路中,合上两只开关以接通电路,有多少种不同的方法?