2017-2018学年人教A版必修三 1.3.1 辗转相除法与更相减损术、秦九韶算法辗转相除法与更相减损术 教案
2017-2018学年人教A版必修三           1.3.1 辗转相除法与更相减损术、秦九韶算法辗转相除法与更相减损术   教案第3页

  第一步:任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。

  第二步:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

  例2 用更相减损术求98与63的最大公约数.

  解:由于63不是偶数,把98和63以大数减小数,并辗转相减,即:98-63=35

  63-35=28

  35-28=7

  28-7=21

  21-7=14

  14-7=7

  所以,98与63的最大公约数是7。

  练习:用更相减损术求两个正数84与72的最大公约数。(答案:12)

  3.比较辗转相除法与更相减损术的区别

  (1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

  (2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到

  4. 辗转相除法与更相减损术计算的程序框图及程序

  利用辗转相除法与更相减损术的计算算法,我们可以设计出程序框图以及BSAIC程序来在计算机上实现辗转相除法与更相减损术求最大公约数,下面由同学们设计相应框图并相互之间检查框图与程序的正确性,并在计算机上验证自己的结果。

  (1)辗转相除法的程序框图及程序

程序框图: