从而f(x)max=
综上所述,f(x)max=
反思与感悟 由于参数的取值范围不同会导致函数在所给区间上的单调性的变化,从而导致最值的变化,所以解决这类问题常常需要分类讨论,并结合不等式的知识进行求解.
跟踪训练2 a为常数,求函数f(x)=-x3+3ax(0≤x≤1)的最大值.
解 f′(x)=-3x2+3a=-3(x2-a).
若a≤0,则f′(x)≤0,函数f(x)单调递减,所以当x=0时,有最大值f(0)=0.若a>0,则令f′(x)=0,解得x=±.
∵x∈[0,1],则只考虑x=的情况.
(1)若0<<1,即0<a<1,则当x=时,f(x)有最大值f()=2a.(如下表所示)
x 0 (0,) (,1) 1 f′(x) + 0 - f(x) 0 2a 3a-1
(2)若≥1,即a≥1时,则当0≤x≤1时,f′(x)≥0,函数f(x)在[0,1]上单调递增,当x=1时,f(x)有最大值f(1)=3a-1.
综上可知,当a≤0,x=0时,f(x)有最大值0;
当0<a<1,x=时,f(x)有最大值2a;
当a≥1,x=1时,f(x)有最大值3a-1.
题型三 函数最值问题的综合应用
例3 已知函数f(x)=x3+ax2+bx+c在x=-与x=1处都取得极值.
(1)求a,b的值与函数f(x)的单调区间;
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.
解 (1)对f(x)=x3+ax2+bx+c求导,
得f′(x)=3x2+2ax+b.