C. D.
[解析] (1)过M点作准线的垂线,垂足是N,则|MF|+|MA|=|MN|+|MA|,当A,M,N三点共线时,|MF|+|MA|取得最小值,此时M(2,2).
(2)
如图,过N作准线的垂线NH,垂足为H.根据抛物线的定义可知|NH|=|NF|,在Rt△NHM中,|NM|=|NH|,则∠NMH=45°.在△MFK中,∠FMK=45°,所以|MF|=|FK|.而|FK|=1.所以|MF|=.故选C.
[答案] (1)D (2)C
[方法技巧]
利用抛物线的定义解决问题时,应灵活地进行抛物线上的点到焦点距离与其到准线距离间的等价转化."看到准线应该想到焦点,看到焦点应该想到准线",这是解决抛物线距离有关问题的有效途径.
考法二 焦点弦问题
焦点弦的常用结论
以抛物线y2=2px(p>0)为例,设AB是抛物线的过焦点的一条弦(焦点弦),F是抛物线的焦点,A(x1,y1),B(x2,y2),A,B在准线上的射影为A1,B1,则有以下结论:
(1)x1x2=,y1y2=-p2;
(2)|AB|=x1+x2+p=(其中θ为直线AB的倾斜角),抛物线的通径长为2p,通径是最短的焦点弦;
(3)+=为定值;
(4)以AB为直径的圆与抛物线的准线相切;
(5)以AF(或BF)为直径的圆与y轴相切;
(6)以A1B1为直径的圆与直线AB相切,切点为F,∠A1FB1=90°;
(7)A,O,B1三点共线,B,O,A1三点也共线.
[例2] (2019·长沙四校联考)过抛物线C:y2=4x的焦点F的直线l与抛物线C交于P