即:的不足近似值,从由小于的方向逼近,的过剩近似值从大于的方向逼近.
所以,当不足近似值从小于的方向逼近时,的近似值从小于的方向逼近.
当的过剩似值从大于的方向逼近时,的近似值从大于的方向逼近,(如课本图所示)
所以,是一个确定的实数.
一般来说,无理数指数幂
是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.
思考:的含义是什么?
由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即: