"碰撞过程"中四个有用推论
弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等的特征,
设两物体质量分别为m1、m2,碰撞前速度分别为υ1、υ2,碰撞后速度分别为u1、u2,即有 :
m1υ1+m2υ2=m1u1+m1u2
m1υ12+m2υ22=m1u12+m1u22☆高☆考♂资♀源€网
碰后的速度u1和u2表示为: u1=υ1+υ2
u2=υ1+υ2
推论一:如对弹性碰撞的速度表达式进行分析,还会发现:弹性碰撞前、后,碰撞双方的相对速度大小相等,即}: u2-u1=υ1-υ2
推论二:如对弹性碰撞的速度表达式进一步探讨,当m1=m2时,代入上式得:。即当质量相等的两物体发生弹性正碰时,速度互换。
推论三:完全非弹性碰撞碰撞双方碰后的速度相等的特征,即: u1=u2
由此即可把完全非弹性碰撞后的速度u1和u2表为: u1=u2=
例3:证明:完全非弹性碰撞过程中机械能损失最大。
证明:碰撞过程中机械能损失表为: △E=m1υ12+m2υ22―m1u12―m2u22
由动量守恒的表达式中得: u2=(m1υ1+m2υ2-m1u1)
代入上式可将机械能的损失△E表为u1的函数为:
△E=-u12-u1+[(m1υ12+m2υ22)-( m1υ1+m2υ2)2]
这是一个二次项系数小于零的二次三项式,显然:当 u1=u2=时,
即当碰撞是完全非弹性碰撞时,系统机械能的损失达到最大值