1.(√6+√2)/4 [解析] sin 75°=sin(45°+30°)=sin 45°cos 30°+cos 45°sin 30°=√2/2×√3/2+√2/2×1/2=(√6+√2)/4.
2.(4"-" 3√3)/10 [解析] ∵cos α=-3/5,α∈(π/2 "," π),∴sin α=4/5,∴sin(α+π/3)=sin αcosπ/3+cos αsinπ/3=4/5×1/2+("-" 3/5)×√3/2=(4"-" 3√3)/10.
3.-1 [解析] 原式=cos 65°cos 115°-sin 65°sin 115°=cos(65°+115°)=cos 180°=-1.
4.7 [解析] tan(α-β)=(tanα"-" tanβ)/(1+tanαtanβ)=7.
5.-4/5 [解析] 因为tan5π/4+α=tanπ/4+α=1/7,所以(1+tanα)/(1"-" tanα)=1/7,所以tan α=-3/4,又α∈π/2,π,所以cos α=-4/√(3^2+"(-" 4")" ^2 )=-4/5.
6.sin(x"-" π/3) [解析] 1/2sin x-√3/2cos x=cosπ/3sin x-sinπ/3cos x=sin(x"-" π/3).
7.√3/3 [解析] (1"-" tan15"°" )/(1+tan15"°" )=(tan45"°-" tan15"°" )/(1+tan45"°" tan15"°" )=tan(45°-15°)=tan 30°=√3/3.
8.2 [解析] 因为α+β=3π/4,所以tan(α+β)=-1,即(tanα+tanβ)/(1"-" tanαtanβ)=-1,整理得(1-tan α)(1-tan β)=2,所以[1+tan(π-α)](1-tan β)=(1-tan α)(1-tan β)=2.
【课堂考点探究】
例1 [思路点拨] (1)利用两角和与差的正弦公式展开已知条件,进而求解;(2)先利用已知条件求出tan α,再根据两角和的正切公式求解.
(1)B (2)-√3/3 [解析] (1)由sin(2α-β)=1/6,sin(2α+β)=1/2,
可得sin 2αcos β-cos 2αsin β=1/6①,
sin 2αcos β+cos 2αsin β=1/2②,
由①+②得2sin 2αcos β=2/3,所以sin 2αcos β=1/3.故选B.
(2)∵cos(α+π/6)=√3/2cos α-1/2sin α=√3cos α,
∴-sin α=√3cos α,故tan α=-√3,
∴tan(α+β)=(tanα+tanβ)/(1"-" tanαtanβ)=("-" √3+√3/3)/(1+√3×√3/3)=("-" (2√3)/3)/2=-√3/3.