6.4数据的波动(1)
教学目标
知识与技能
1、经历数据离散程度的探索过程
2、了解刻画数据离散程度的三个量度--极差、标准差和方差,能借助计算器求出相应的数值。
过程与方法
培养学生认真、耐心、细致的学习态度和学习习惯. 2.渗透数学来源于实践,又反过来作用于实践的观点.
情感态度与价值观
通过本节课的教学,渗透了数学知识的抽象美及反映在图像上的形象美,激发学生对美好事物的追求,提高学生对数学美的鉴赏力
教学重点
会计算某些数据的极差、标准差和方差。
教学难点
理解数据离散程度与三个"差"之间的关系。
教学准备:计算器,投影片等
教学过程:
一、创设情境
1、投影课本P148引例。
(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会"平均水平"相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度--极差)
2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。
二、活动与探究
如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)
问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?
2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。
3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?
(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度--标准差和方差作铺垫。
三、讲解概念:
方差:各个数据与平均数之差的平方的平均数,记作s2
设有一组数据:x1, x2, x3,......,xn,其平均数为
则s2=,
而s=称为该数据的标准差(既方差的算术平方根)
从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。
四、做一做