∴cos α=-=-,
∴tan α==.
答案 C
(2)已知sin α+cos α=,α∈(0,π),则tan α=________.
解析 ∵sin α+cos α=,∴(sin α+cos α)2=,
即2sin αcos α=-<0,
又α∈(0,π),则sin α>0,cos α<0,∴α∈(,π),
故sin α-cos α==,
可得sin α=,cos α=-,tan α=-.
答案 -
规律方法 求三角函数值的方法
(1)已知sin θ(或cos θ)求tan θ常用以下方式求解
(2)已知三角函数值之间的关系式求其它三角函数值的问题,我们可利用平方关系或商数关系求解,其关键在于运用方程的思想及(sin α±cos α)2=1±2sin αcos α的等价转化,分析解决问题的突破口.
【训练1】 已知cos α=-,求sin α,tan α的值.
解 ∵cos α=-<0,且cos α≠-1,
∴α是第二或第三象限角,
(1)当α是第二象限角时,则
sin α= = =,
tan α===-.
(2)当α是第三象限角时,则