2010届高考数学复习:函数值域及求法
2010届高考数学复习:函数值域及求法第4页

  A.(-∞,- B.[-,+∞

  C.[,+∞ D.(-∞,-]

  2.(★★★★)函数y=x+的值域是( )

  A.(-∞,1 B.(-∞,-1

  C.R D.[1,+∞

  二、填空题

  3.(★★★★★)一批货物随17列货车从A市以V千米/小时匀速直达B市,已知两地铁路线长400千米,为了安全,两列货车间距离不得小于()2千米 ,那么这批物资全部运到B市,最快需要_________小时(不计货车的车身长).

  4.(★★★★★)设x1、x2为方程4x2-4mx+m+2=0的两个实根,当m=_________时,x12+x22有最小值_________.

  三、解答题

  5.(★★★★★)某企业生产一种产品时,固定成本为5000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为R(x)=5x-x2(万元)(0≤x≤5),其中x是产品售出的数量(单位:百台)

  (1)把利润表示为年产量的函数;

  (2)年产量多少时,企业所得的利润最大?

  (3)年产量多少时,企业才不亏本?

  6.(★★★★)已知函数f(x)=lg[(a2-1)x2+(a+1)x+1]

  (1)若f(x)的定义域为(-∞,+∞),求实数a的取值范围;

  (2)若f(x)的值域为(-∞,+∞),求实数a的取值范围.

7.(★★★★★)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台.已知生产家电产品每台所需工时和每台产值如下表: