空间向量及其运算
【使用说明及学法指导】
1.先自学课本,理解概念,完成导学提纲;
2.小组合作,动手实践。
【学习目标】
1. 理解空间向量的概念,掌握其表示方法;
2. 会用图形说明空间向量加法、减法、数乘向量及它们的运算律;
3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.
【重点】能用空间向量的运算意义及运算律解决简单的立体几何中的问题
【难点】会用图形说明空间向量加法、减法、数乘向量及它们的运算律;
一、自主学习
1.预习教材P84~ P86, 解决下列问题
复习1:平面向量基本概念:
具有 和 的量叫向量, 叫向量的模(或长度); 叫零向量,记着 ; 叫单位向量. 叫相反向量, 的相反向量记着 . 叫相等向量. 向量的表示方法有 , ,和 共三种方法.
复习2:平面向量有加减以及数乘向量运算:
1. 向量的加法和减法的运算法则有 法则 和 法则.
2. 实数与向量的积:
实数λ与向量a的积是一个 量,记作 ,其长度和方向规定如下:
(1)|λa|= .
(2)当λ>0时,λa与b ;
当λ<0时,λa与b ;
当λ=0时,λa= .
3. 向量加法和数乘向量,以下运算律成立吗?
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
数乘分配律:λ(a+b)=λa+λb
2. 导学提纲
1. 空间向量中的零向量,单位向量,相等向量分别如何表示:__________、_________、_____________.
2. 分别用平行四边形法则和三角形法则求.
点C在线段AB上,且,则 , .