考点 利用函数单调性求变量
题点 已知函数单调性求参数
解 (1)求导得f′(x)=3x2-a,
因为f(x)在R上是增函数,
所以f′(x)≥0在R上恒成立.
即3x2-a≥0在R上恒成立.
即a≤3x2,而3x2≥0,所以a≤0.
当a=0时,f(x)=x3-1在R上单调递增,符合题意.
所以a的取值范围是(-∞,0].
(2)假设存在实数a,使f(x)在(-1,1)上单调递减,
则f′(x)≤0在(-1,1)上恒成立.
即3x2-a≤0在(-1,1)上恒成立,即a≥3x2,
又因为在(-1,1)上,0≤3x2<3,所以a≥3.
当a=3时,f′(x)=3x2-3,在(-1,1)上,f′(x)<0,
所以f(x)在(-1,1)上单调递减,即a=3符合题意.
所以存在实数a,使f(x)在(-1,1)上单调递减,且a的取值范围是[3,+∞).
类型三 函数的极值、最值与导数
例3 已知函数f(x)=x2+aln x.
(1)若a=-1,求函数f(x)的极值,并指出是极大值还是极小值;
(2)若a=1,求函数f(x)在[1,e]上的最大值和最小值;
(3)若a=1,求证:在区间[1,+∞)上,函数f(x)的图象在函数g(x)=x3的图象的下方.
考点 导数的综合应用
题点 导数的综合应用
(1)解 由于函数f(x)的定义域为(0,+∞),
当a=-1时,f′(x)=x-=,
令f′(x)=0,得x=1或x=-1(舍去),
当x∈(0,1)时,f′(x)<0,函数f(x)单调递减,