2019-2020学年人教A版必修三 3.1.2 概率的意义 教案
2019-2020学年人教A版必修三   3.1.2 概率的意义  教案第2页

概率为90%"的天气预报是错误的.

(5)奥地利遗传学家(G.Mendel,1822-1884)用豌豆进行杂交试验,下表为试验结果(其中F1为第一子代,F2为第二子代):

性状 F1的表现 F2的表现 种子的形状 全部圆粒 圆粒5 474 皱粒1 850 圆粒∶皱粒≈2.96∶1 茎的高度 全部高茎 高茎787 矮茎277 高茎∶矮茎≈2.84∶1 子叶的颜色 全部黄色 黄色6 022 绿色2 001 黄色∶绿色≈3.01∶1 豆荚的形状 全部饱满 饱满882 不饱满299 饱满∶不饱满≈2.95∶1 孟德尔发现第一子代对于一种性状为必然事件,其可能性为100%,另一种性状的可能性为0,而第二子代对于前一种性状的可能性约为75%,后一种性状的可能性约为25%,通过进一步研究,他发现了生物遗传的基本规律.实际上,孟德尔是从某种性状发生的频率作出估计的.

(6)利用刚学过的概率知识我们可以进行推断,如果它是均匀的,通过试验和观察,可以发现出现各个面的可能性都应该是,从而连续10次出现1点的概率为()10≈0.000 000 001 653 8,这在一次试验(即连续10次投掷一枚骰子)中是几乎不可能发生的.而当骰子不均匀时,特别是当6点的那面比较重时(例如灌了铅或水银),会使出现1点的概率最大,更有可能连续10次出现1点.

现在我们面临两种可能的决策:一种是这枚骰子的质地均匀,另一种是这枚骰子的质地不均匀.当连续10次投掷这枚骰子,结果都是出现1点,这时我们更愿意接受第二种情况:这枚骰子靠近6点的那面比较重.原因是在第二种假设下,更有可能出现10个1点.

如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么"使得样本出现的可能性最大"可以作为决策的准则,例如对上述思考题所作的推断.这种判断问题的方法称为极大似然法.极大似然法是统计中重要的统计思想方法之一.

如果我们的判断结论能够使得样本出现的可能性最大,那么判断正确的可能性也最大.这种判断问题的方法称为似然法.似然法是统计中重要的统计思想方法之一.

三、例题讲解:

例1 为了估计水库中的鱼的尾数,可以使用以下的方法,先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.

试根据上述数据,估计水库内鱼的尾数.

分析:学生先思考,然后交流讨论,教师指导,这实际上是概率问题,即2 000尾鱼在水库中占所有鱼的百分比,特别是500尾中带记号的有40尾,就说明捕出一定数量的鱼中带记号的概率为,问题可解.

解:设水库中鱼的尾数为n,A={带有记号的鱼},则有P(A)=. ①

因P(A)≈, ②

由①②得,解得n≈25 000.

所以估计水库中约有鱼25 000尾.