②"While循环"是当型循环结构,其特点是"前测试",即先判断,后执
行.若初始条件不成立,则一次也不执行循环体中的内容;
③任何一种需要重复处理的问题都可以用这种前测试循环来实现.
四、数学运用
1.例题:
例1 编写程序,计算自然数1+2+3+......+99+100的和.
解:用"For循环"表示如下: 用"While循环"表示如下:
例2 试用算法语句表示:寻找满足的最小整数的算法.
解:本例中循环的次数不定,因此可用"While循环"语句,具体描述如下:
例3 抛掷一枚硬币时,既可能出现正面,也可能出现反面,预先作出确定的判断是不可能的,但是假如硬币质量均匀,那么当抛掷次数很多时,出现正面的频率应接近50%.试设计一个循环语句模拟抛掷硬币的过程,并计算抛掷中出现正面的频率.
分析 抛掷硬币的过程实际上是一个不断重复地做同一件事情的过程,利用循环语句,我们很容易在计算机上模拟这一过程.
在程序设计中,有一个随机函数"Rnd",它能产生0与1之间的随机数.这样,我们可用大于的随机数表示出现正面,不大于的随机数表示出现反面.
解:本题算法的伪代码如下: