(2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望.
【解析】(1)依题意及频率分布直方图知0.02+0.1+x+0.37+0.39=1,解得x=0.12.
(2)由题意知X~B(3,0.1),因此
P(X=0)=C×0.93=0.729,
P(X=1)=C×0.1×0.92=0.243,
P(X=2)=C×0.12×0.9=0.027,
P(X=3)=C×0.13=0.001,
故随机变量X的分布列为
X 0 1 2 3 P 0.729 0.243 0.027 0. 001 X的数学期望为E(X)=3×0.1=0.3.
(或E(X)=1×0.243+2×0.027+3×0.001=0.3)
【点拨】从频率分布直方图读取数据时,要特别重视组距,纵坐标是频率除以组距,故长方形的面积之和为1.
【变式训练2】如图是容量为100的样本的频率分布直方图,试根据数据填空:
(1)样本数据落在[10,14)内的频数为 ;
(3)总体落在[2,6)内的频率为 .
【解析】(1)样本落在[10,14)内的频数为0.09×4×100=36.
(2)样本落在[6,10)内的频率为0.08×4=0.32.
(3)样本落在[2,6)内的频率为0.02×4=0.08,所以总体落在[2,6)内的频率约为0.08.
题型三 平均数、方差的计算
【例3】甲、乙两人在相同条件下各射靶10次,每次命中环数如下:
甲 4 7 10 9 5 6 8 6 8 8