检样品,样品中的不合格数X服从的分布称超几何分布。
X的分布概率为:
X=0,1,......
X的期望 E(X)=nd/N
X的方差 D(X)=((nd/N)((N-d)/N)((N-n)/N))(1/2)
3.2.2 二项分布
超几何分布的概率公式可以写成阶乘的形式,共有9个阶乘,因而计算起来十分繁琐。二项分布就可以看成是超几何分布的一个简化。
假设有一批产品,不合格品率为P,从这批产品中随机地抽出n件作为被检样品,其中不合格品数X服从的分布为二项分布。
X的概率分布为:
0
x=0,1,......,n
X的期望 E(X)=np
X的方差 D(X)=np(1-p)
3.2.3 泊松分布
泊松分布比二项分布更重要。我们从产品受冲击(指瞬时高电压、高环境应力、高负载应力等)而失效的事实引入泊松分布。假设产品只有经过一定的冲击次数后,产品才失效,又设这些冲击满足三个条件:
(1)、两个不相重叠的时间间隔内产品所受冲击次数相互独立;
(2)、在充分小的时间间隔内发生两次或更多次冲击的机会可忽略不计;
(3)、在单位时间内发生冲击的平均次数λ(λ>0)不随时间变化,即在时间间隔Δt 内平均发生λΔt 次冲击,它和 Δt 的起点无关。