2019-2020学年北师大版选修2-3 常用的概率分布类型及其特征 教案
2019-2020学年北师大版选修2-3     常用的概率分布类型及其特征  教案第2页

检样品,样品中的不合格数X服从的分布称超几何分布。

X的分布概率为:

X=0,1,......

X的期望 E(X)=nd/N

X的方差 D(X)=((nd/N)((N-d)/N)((N-n)/N))(1/2)

3.2.2 二项分布

超几何分布的概率公式可以写成阶乘的形式,共有9个阶乘,因而计算起来十分繁琐。二项分布就可以看成是超几何分布的一个简化。

假设有一批产品,不合格品率为P,从这批产品中随机地抽出n件作为被检样品,其中不合格品数X服从的分布为二项分布。

X的概率分布为:

0

x=0,1,......,n

X的期望 E(X)=np

X的方差 D(X)=np(1-p)

3.2.3 泊松分布

泊松分布比二项分布更重要。我们从产品受冲击(指瞬时高电压、高环境应力、高负载应力等)而失效的事实引入泊松分布。假设产品只有经过一定的冲击次数后,产品才失效,又设这些冲击满足三个条件:

(1)、两个不相重叠的时间间隔内产品所受冲击次数相互独立;

(2)、在充分小的时间间隔内发生两次或更多次冲击的机会可忽略不计;

(3)、在单位时间内发生冲击的平均次数λ(λ>0)不随时间变化,即在时间间隔Δt 内平均发生λΔt 次冲击,它和 Δt 的起点无关。