全班汇报交流。
引导学生明确:一个方格表示1cm,不满一格都按半格计算。
(4)学生按上述方法来估计这片叶子的面积。
引导汇报:满一格的1cm,刚好18格,按照不满一格也是18格,都按半格计算,那么这片叶子的面积在18 cm-36 cm之间。
由计算得出18+18×0.5=18+9=27cm,一共是27 cm。
引导小结:用数格子的方法来估算不规则图形的面积。
①先数出所有格子,确定图形的面积范围;
②每一整格按一个小正方形面积来计,不满一格的都按半格来计算,最后将这两部分相加,就得出图形的面积。
强调注意:计算面积时,半格数要除以2。
2.探究用转化的方法来估算图形的面积。
(1)提问:这个图形,我们能不能利用上节课我们所学的求组合图形的方法来估算呢?用什么方法呢?
引导学生讨论:明确利用割补法把这片叶子拼成一个近似的图形来计算。
(2)学生活动:用割补法把这片叶子拼成一个近似的平行四边形或其他的图形。
(3)计算:利用平行四边形的面积公式可知,5×6=30 cm。
(4)学生独立完成估算过程。
(5)讨论:你是怎样估算这个图形面积的呢?
学生讨论,并汇报交流。
引导明确:可以拼成一个近似的长方形、梯形等,并实际操作进行估算。
三、巩固应用,内化提高。
(一)基本练习
1.完成练习二十二第8题。
学生独立完成后相互交流,集体订正。
提示:利用数格子的方法或割补法来估算。
(二)提高练习:
用刚学的方法来估计你手掌面的面积。