2.在三棱锥中, 平面,,分别是棱的中点, .则直线与平面所成的角正弦值为( )
A. B. C. D.
3. 二面角的棱上有两点,直线分别在这个二面角的两个半平面内,且都垂直于,已知,则该二面角的大小为( )
. . . .
4.已知空间四边形的各边和对角线的长都等于,点分别是直线 的中点,则异面直线与所成的角余弦值为___________
(三)、规律方法总结:用空间向量解决立体几何问题的"三步曲"
(1)用空间向量解决立体几三步曲:
1. 化为向量问题或向量的坐标问题
2. 进行向量运算
3 .回到图形
(2)两种思维方法:
用空间向量解决立体几何问题,有两种基本思维:
(1)一种是利用空间向量表示几何量,利用向量的运算进行判断,此种方法不需要建系;
(2)另一种是用空间向量的坐标表示几何量,利用向量的坐标运算进行判断,此种方法需要建系.
(四)、典例分析(教师讲解,师生共同完成)
例1. 如图所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.
(1)试建立适当的坐标系,并写出点P、B、D的坐标;
(2)问当实数a在什么范围时,BC边上能存在点Q,