,,,。
要点诠释:
①只有当抛物线的顶点是原点,对称轴是坐标轴时,才能得到抛物线的标准方程;
②抛物线的焦点在标准方程中一次项对应的坐标轴上,且开口方向与一次项的系数的正负一致,比如抛物线的一次项为,故其焦点在轴上,且开口向负方向(向下)
③抛物线标准方程中一次项的系数是焦点的对应坐标的4倍,比如抛物线的一次项的系数为,故其焦点坐标是。
一般情况归纳:
方程 图象的开口方向 焦点 准线 时开口向右 时开口向左 时开口向上 时开口向下 ④从方程形式看,求抛物线的标准方程仅需确定一次项系数。用待定系数法求抛物线的标准方程时,首先根据已知条件确定抛物线的标准方程的类型(一般需结合图形依据焦点的位置或开口方向定型),然后求一次项的系数,否则,应展开相应的讨论.
⑤在求抛物线方程时,由于标准方程有四种形式,易混淆,可先根据题目的条件作出草图,确定方程的形式,再求参数p,若不能确定是哪一种形式的标准方程,应写出四种形式的标准方程来,不要遗漏某一种情况。
要点三、抛物线的简单几何性质:
抛物线标准方程的几何性质
范围:,,
抛物线y2=2px(p>0)在y轴的右侧,开口向右,这条抛物线上的任意一点M的坐标(x,y)的横坐标满足不等式x≥0;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸。抛物线是无界曲线。
对称性:关于x轴对称
抛物线y2=2px(p>0)关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴。抛物线只有一条对称轴。
顶点:坐标原点