答案 BC
解析 M和m碰撞时间极短,在极短的时间内弹簧形变极小,可忽略不计,因而m0在水平方向上没有受到外力作用,动量不变(速度不变),可以认为碰撞过程中m0没有参与,只涉及M和m,由于水平面光滑,弹簧形变极小,所以M和m组成的系统水平方向动量守恒,两者碰撞后可能具有共同速度,也可能分开,所以只有B、C正确.
【例2】 如图2所示,一辆砂车的总质量为M,静止于光滑的水平面上.一个质量为m的物体A以速度v落入砂车中,v与水平方向成θ角,求物体落入砂车后车的速度v′.
图2
答案
解析 物体和车作用时总动量不守恒,而水平面光滑,系统在水平方向上动量守恒,即mvcos θ=(M+m)v′,得v′=.
二、多物体、多过程动量守恒定律的应用
对于由多个物体组成的系统,由于物体较多,作用过程较为复杂,这时往往要根据作用过程中的不同阶段,将系统内的物体按作用的关系分成几个小系统,对不同阶段、不同的小系统准确选取初、末状态,分别列动量守恒定律方程求解.
【例3】 如图3所示,A、B两个木块质量分别为2 kg与0.9 kg,A、B与水平地面间接触面光滑,上表面粗糙,质量为0.1 kg的铁块以10 m/s的速度从A的左端向右滑动,最后铁块与B的共同速度大小为0.5 m/s,求:
图3
(1)A的最终速度;
(2)铁块刚滑上B时的速度.
答案 (1)0.25 m/s (2)2.75 m/s
解析 (1)选铁块和木块A、B为一系统,
由系统总动量守恒得:mv=(mB+m)vB+mAvA
可求得:vA=0.25 m/s