∴不等式可化为log2(x2+5x+4)≥2 ①
或log2(x2+5x+4)≤-2 ②
由①得x2+5x+4≥4
∴x≤-5或x≥0 ③
由②得0<x2+5x+4≤得≤x<-4或-1<x≤ ④
由③④得原不等式的解集为
{x|x≤-5或≤x≤-4或-1<x≤或x≥0}
歼灭难点训练
一、1.解析:f(7.5)=f(5.5+2)=-f(5.5)=-f(3.5+2)=f(3.5)=f(1.5+2)=-f(1.5)=-f(-0.5+2)=
f(-0.5)=-f(0.5)=-0.5.
答案:B
2.解析:∵f(x)是定义在(-1,1)上的奇函数又是减函数,且f(a-3)+f(9-a2)<0.
∴f(a-3)<f(a2-9).
∴ ∴a∈(2,3).
答案:A
二、3.解析:由题意可知:xf(x)<0
∴x∈(-3,0)∪(0,3)
答案:(-3,0)∪(0,3)
4.解析:∵f(x)为R上的奇函数
∴f()=-f(-),f()=-f(-),f(1)=-f(-1),又f(x)在(-1,0)上是增函数且->
->-1.
∴f(-)>f(-)>f(-1),∴f()<f()<f(1).
答案:f()<f()<f(1)