1.3.2 含有一个量词的命题的否定
学习目标:1、通过探究数学中一些实例,使学生归纳总结出含有一个量词的命题与它们的否定在形式上的变化规律.
2、通过例题和习题的教学,使学生能够根据含有一个量词的命题与它们的否定在形式上的变化规律,正确地对含有一个量词的命题进行否定.
重点:通过探究,了解含有一个量词的命题与它们的否定在形式上的变化规律,会正确地对含有一个量词的命题进行否定.
难点:正确地对含有一个量词的命题进行否定.
自主学习
1、判断下列命题是全称命题还是特称命题,你能写出下列命题的否定吗?
(1)所有的矩形都是平行四边形;
(2)每一个素数都是奇数;
(3)x∈R, x2-2x+1≥0。
(4)有些实数的绝对值是正数;
(5)某些平行四边形是菱形;
(6) x∈R, x2+1<0。
2、从命题的形式上看,前三个全称命题的否定都变成了特称命题。后三个特称命题的否定都变成了全称命题。
一般地,对于含有一个量词的全称命题的否定,有下面的结论:
全称命题和否定是特称命题。特称命题的否定是全称命题。
合作探究
例1、判断下列命题是全称命题还是特称命题,并写出它们的否定:
(1)、p:所有能被3整除的整数都是奇数;
(2)、p:每一个四边形的四个顶点共圆;
(3)、p:对x∈Z,x2个位数字不等于3;
(4)、p: x∈R, x2+2x+2≤0;
(5)、p:有的三角形是等边三角形;
(6)、p:有一个素数含三个正因数。
例2、指出下列命题的形式,写出下列命题的否定。
(1)所有的矩形都是平行四边形;
(2)每一个素数都是奇数;(3)xR,x2-2x+1≥0
例3、写出命题的否定(1)p:$ x∈R,x2+2x+2≤0;(2)p:有的三角形是等边三角形;
(3)p:有些函数没有反函数;(4)p:存在一个四边形,它的对角线互相垂直且平分;
练习反馈
1、写出下列全称命题的否定:(1)p:所有人都晨练;(2)p:xR,x2+x+1>0;
(3)p:平行四边形的对边相等;(4)p:$ x∈R,x2-x+1=0;
2、写出下列命题的否定。(1) 所有自然数的平方是正数。 (2) 任何实数x都是方程5x-12=