点就是最值点,不必考虑端点的函数值
例2、圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?
解:设圆柱的高为h,底半径为R,则表面积
S=2πRh+2πR2
由V=πR2h,得,则
S(R)= 2πR+ 2πR2=+2πR2
令 +4πR=0
解得,R=,从而h====2
即h=2R因为S(R)只有一个极值,所以它是最小值答:当罐的高与底直径相等时,所用材料最省
变式:当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省? 提示:S=2+h=
V(R)=R=
)=0 .
例3、已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的函数关系式为.求产量q为何值时,利润L最大?
分析:利润L等于收入R减去成本C,而收入R等于产量乘价格.由此可得出利润L与产量q的函数关系式,再用导数求最大利润.
解:收入,
利润
令,即,求得唯一的极值点答:产量为84时,利润L最大