续奇数之积乘以2n,则第n个等式为(n+1)(n+2)...(n+n)=2n×1×3×...×(2n-1).
(2)∵f(x)=,∴f1(x)=.
又∵fn(x)=fn-1(fn-1(x)),
∴f2(x)=f1(f1(x))==,
f3(x)=f2(f2(x))==,
f4(x)=f3(f3(x))==,
f5(x)=f4(f4(x))==,
∴根据前几项可以猜想fn(x)=.
引申探究
在本例(2)中,若把"fn(x)=fn-1(fn-1(x))"改为"fn(x)=f(fn-1(x))",其他条件不变,试猜想fn(x) (n∈N*)的表达式.
解 ∵f(x)=,∴f1(x)=.
又∵fn(x)=f(fn-1(x)),
∴f2(x)=f(f1(x))==,
f3(x)=f(f2(x))==,
f4(x)=f(f3(x))==.
因此,可以猜想fn(x)=.