直线的综合应用(1)
课 型:习题课
教学目标:巩固倾斜角、斜率等概念;熟练掌握直线方程的各种形式;能正确判定两直线的位置关系。
教学重点:直线知识的掌握及应用
教学难点:数学思想方法在直线解题中的应用
教学过程:
一、知识回顾
1、倾斜角、斜率等概念
2、直线方程的各种形式
3、两直线的位置关系
4、距离公式
二、课前练习
1、直线的倾斜角是( )
(A)30° (B)120° (C)60° (D)150°
2、直线x-2y-2k=0与2x-3y-k=0的交点在直线3x-y=0上,则k的值为( )
(A)1 (B)2 (C) (D)0
3、两直线3x+2y+m=0和(m2+1)x-3y-3m=0的位置关系是( )
(A)平行 (B)相交 (C)重合 (D)视M而定
4、直线3x+4y-12=0和6x+8y+6=0间的距离是
5.下列说法正确的是
(A)若直线l1与l2的斜率相等,则l1//l2
(B)若直线l1//l2,则l1与l2的斜率相等
(C)若一条直线的斜率存在,另一条直线的斜率不存在,则它们一定相交
(D)若直线l1与l2的斜率都不存在,则l1//l2
6.下列说法中不正确的是
(A)点斜式y-y1=k(x-x1)适用于不垂直于x轴的任何直线
(B)斜截式y=kx+b适用于不垂直于x轴的任何直线
(C)两点式适用于不垂直于x轴和y轴的任何直线
(D)截距式适用于不过原点的任何直线
7.下列四个命题中,真命题的个数是
①经过定点P0(x0, y0)的直线,都可以用方程y-y0=k(x-x0)来表示
②经过任意两点的直线,都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示
③不经过原点的直线,都可以用方程来表示
④经过点A(0, b)的直线,都可以用方程y=kx+b来表示
(A)0个 (B)1个 (C)2个 (D)4个
8.经过点(-3, -2),在两坐标轴上截距相等的直线的方程为
9.直线bx+ay=1在x轴上的截距是
(A) (B)b (C) (D)|b|
10.两条直线l1: y=kx+b, l2: y=bx+k( k>0, b>0, k≠b)的图象是下图中的