师:请同学们认真看题目,与同桌说说你是如何估算的?
生1:我是这样估计的,这个圆的面积比圆外的大正方形的面积小,而比圆内的小正方形的面积大,大正方形的面积是100平方米,小正方形的面积是50平方米,那么这个圆的面积大约在50~100平方米之间。
生2:我先算了四分之一个大正方形的面积是25平方米,而圆外角落里的面积约为5平方米,那么四分之一个圆的面积约是20平方米,整个圆的面积大约就是80平方米。
师:哦,你把范围缩小了,估得真不错!
生:我是这样估算的,我先算了圆外四个角落的面积约为20平方米,用大正方形的面积100平方米减去20平方米等于80平方米。所以我估计这个圆的面积也是80平方米。
师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果。如果我们遇到更大的圆,比操场还大的,那还能用这种方法吗?有什么更好的方法吗?
生1:如果知道圆的面积计算公式就好了。
生2:我想能不能把圆也转化成我们学过的图形来计算。
师:对了,最直接最方便的就是用圆的面积计算公式来算。刚才同学说得很好!想把圆转化成我们学过的图形来计算,接下来我们一起来探索圆的面积计算公式是怎样的?
2、探索圆的面积计算公式
(1)动手操作
师:那么大家想把圆转化成什么图形呢?请拿出你们课前准备好的圆,和小组里的同学剪一剪,拼一拼。看看能拼成什么图形?
(2)指名汇报,实图展示。
师:通过刚才同学们的相互协作,相信你们一定取得了不小的成果。下面请小组派代表上台来展示一下所拼成的图形。
生1:我们组把圆平均分成8份,拼成了个类似平行四边形的图形。
生2:我们组是把圆平均分成16份,也拼成了个类似平行四边形的图形。
师:现在请同学们观察一下,剪成8份和16份所拼成的图形有什么变化?
生:分成16份的拼成的图形更像平行四边形。
(3)操作反思
师:你们有什么发现?
生:要想拼成的图形更接近于平行四边形,可以把圆分的份数再多一些。
师:也就是说如果我们继续分下去,拼成的图形就越接近于长方形了。通过剪拼,我们发现,圆曲线的边展开了,分的份数越多,展开来圆的边就越直。这就是化曲为直的方法。 (4)思考讨论,观察汇报
师:圆与转化成的长方形或平行四边形之间有怎样的关系?
生:通过刚才的动手剪拼,我认为把圆转化成长方形或平行四边形,它的形状变了,面积没变。 生1:它的周长也变了。
生2:圆的面积和长方形的面积相等。
生3:拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径
师:你们能否用长方形的面积公式推导出圆的面积公式,并说说你的理由。
生:因为长方形的长相当于圆的周长的一半,宽相当于半径,根据长方形的面积等于长乘宽,所以可以得出圆的面积等于圆周长的一半乘半径。(圆周长的一半用字母表示,面积也用字母表示)
(教师根据学生汇报有序地整理板书。)
板书: 平行四边形的面积 = 底 × 高 长方形的面积=长×宽
↓ ↓ ↓ ↓ ↓