图6
求证:四边形EFGH是平行四边形.
证明:连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=.
同理,FG∥BD,且FG=.
所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.
变式训练
1.如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点且AC=BD.
求证:四边形EFGH是菱形.
证明:连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=.
同理,FG∥BD,EF∥AC,且FG=,EF=.
所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.
因为AC=BD,所以EF=EH.
所以四边形EFGH为菱形.
2.如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点且AC=BD,AC⊥BD.求证:四边形EFGH是正方形.
证明:连接EH,因为EH是△ABD的中位线,
所以EH∥BD,且EH=.
同理,FG∥BD,EF∥AC,且FG=,EF=.
所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.
因为AC=BD,所以EF=EH.